

Welcome to Redis Timeseries’s documentation!

Contents:

	Redis Timeseries
	Install

	Usage

	Features

	Credits

	Installation
	Stable release

	From sources

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	History
	0.1.8 (2017-07-25)

	0.1.7 (2017-07-25)

	0.1.6 (2017-07-25)

	0.1.5 (2017-07-18)

	0.1.4 (2017-07-12)

	0.1.3 (2017-03-30)

	0.1.2 (2017-03-30)

	0.1.1 (2017-03-30)

	0.1.0 (2017-03-30)

Indices and tables

	Index

	Module Index

	Search Page

Redis Timeseries

Time series API built on top of Redis that can be used to store and query
time series statistics. Multiple time granularities can be used to keep
track of different time intervals.

[image: https://img.shields.io/pypi/v/redis_timeseries.svg]
 [https://pypi.python.org/pypi/redis_timeseries][image: https://api.travis-ci.org/ryananguiano/python-redis-timeseries.svg?branch=master]
 [https://travis-ci.org/ryananguiano/python-redis-timeseries][image: Documentation Status]
 [https://redis-timeseries.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/ryananguiano/python-redis-timeseries/]
	Free software: MIT license

	Documentation: https://redis-timeseries.readthedocs.io.

Install

To install Redis Timeseries, run this command in your terminal:

$ pip install redis_timeseries

Usage

To initialize the TimeSeries class, you must pass a Redis client to
access the database. You may also override the base key for the time series.

>>> import redis
>>> client = redis.StrictRedis()
>>> ts = TimeSeries(client, base_key='my_timeseries')

To customize the granularities, make sure each granularity has a ttl
and duration in seconds. You can use the helper functions for
easier definitions.

>>> my_granularities = {
... '1minute': {'ttl': hours(1), 'duration': minutes(1)},
... '1hour': {'ttl': days(7), 'duration': hours(1)}
... }
>>> ts = TimeSeries(client, granularities=my_granularities)

.record_hit() accepts a key and an optional timestamp and increment
count. It will record the data in all defined granularities.

>>> ts.record_hit('event:123')
>>> ts.record_hit('event:123', datetime(2017, 1, 1, 13, 5))
>>> ts.record_hit('event:123', count=5)

.record_hit() will automatically execute when execute=True. If you
set execute=False, you can chain the commands into a single redis
pipeline. You must then execute the pipeline with .execute().

>>> ts.record_hit('event:123', execute=False)
>>> ts.record_hit('enter:123', execute=False)
>>> ts.record_hit('exit:123', execute=False)
>>> ts.execute()

.get_hits() will query the database for the latest data in the
selected granularity. If you want to query the last 3 minutes, you
would query the 1minute granularity with a count of 3. This will return
a list of tuples (bucket, count) where the bucket is the rounded timestamp.

>>> ts.get_hits('event:123', '1minute', 3)
[(datetime(2017, 1, 1, 13, 5), 1), (datetime(2017, 1, 1, 13, 6), 0), (datetime(2017, 1, 1, 13, 7), 3)]

.get_total_hits() will query the database and return only a sum of all
the buckets in the query.

>>> ts.get_total_hits('event:123', '1minute', 3)
4

.scan_keys() will return a list of keys that could exist in the
selected range. You can pass a search string to limit the keys returned.
The search string should always have a * to define the wildcard.

>>> ts.scan_keys('1minute', 10, 'event:*')
['event:123', 'event:456']

Features

	Multiple granularity tracking

	Redis pipeline chaining

	Key scanner

	Easy to integrate with charting packages

	Can choose either integer or float counting

	Date bucketing with timezone support

Credits

Algorithm copied from tonyskn/node-redis-timeseries [https://github.com/tonyskn/node-redis-timeseries]

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Redis Timeseries, run this command in your terminal:

$ pip install redis_timeseries

This is the preferred method to install Redis Timeseries, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Redis Timeseries can be downloaded from the Github repo [https://github.com/ryananguiano/python-redis-timeseries].

You can either clone the public repository:

$ git clone git://github.com/ryananguiano/python-redis-timeseries

Or download the tarball [https://github.com/ryananguiano/python-redis-timeseries/tarball/master]:

$ curl -OL https://github.com/ryananguiano/python-redis-timeseries/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/ryananguiano/python-redis-timeseries/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Redis Timeseries could always use more documentation, whether as part of the
official Redis Timeseries docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ryananguiano/python-redis-timeseries/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up python-redis-timeseries for local development.

	Fork the python-redis-timeseries repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/python-redis-timeseries.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv python-redis-timeseries
$ cd python-redis-timeseries/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 redis_timeseries tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/ryananguiano/python-redis-timeseries/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_redis_timeseries

History

0.1.8 (2017-07-25)

	Fix bug in _round_time() method

0.1.7 (2017-07-25)

	Fix bug in _round_time() method

0.1.6 (2017-07-25)

	Add timezone so day buckets will start at midnight in the correct timezone

0.1.5 (2017-07-18)

	Update default granularities

0.1.4 (2017-07-12)

	Add float value capabilities

	Add increase() and decrease() methods

	Move get_hits() -> get_buckets() and get_total_hits() -> get_total()

0.1.3 (2017-03-30)

	Remove six package

	Clean up source file

0.1.2 (2017-03-30)

	Make Python 3 compatible

	Fix tox to make PyPy work

0.1.1 (2017-03-30)

	Minor project file updates

0.1.0 (2017-03-30)

	First release on PyPI.

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 redis_timeseries	

Index

 D
 | E
 | G
 | H
 | I
 | M
 | R
 | S
 | T

D

 	
 	days() (in module redis_timeseries)

 	
 	decrease() (redis_timeseries.TimeSeries method)

E

 	
 	execute() (redis_timeseries.TimeSeries method)

G

 	
 	get_buckets() (redis_timeseries.TimeSeries method)

 	get_hits() (redis_timeseries.TimeSeries method)

 	get_key() (redis_timeseries.TimeSeries method)

 	
 	get_total() (redis_timeseries.TimeSeries method)

 	get_total_hits() (redis_timeseries.TimeSeries method)

 	granularities (redis_timeseries.TimeSeries attribute)

H

 	
 	hours() (in module redis_timeseries)

I

 	
 	increase() (redis_timeseries.TimeSeries method)

M

 	
 	minutes() (in module redis_timeseries)

R

 	
 	record_hit() (redis_timeseries.TimeSeries method)

 	
 	redis_timeseries (module)

 	remove_hit() (redis_timeseries.TimeSeries method)

S

 	
 	scan_keys() (redis_timeseries.TimeSeries method)

 	
 	seconds() (in module redis_timeseries)

T

 	
 	TimeSeries (class in redis_timeseries)

redis_timeseries module

	
class redis_timeseries.TimeSeries(client, base_key='stats', use_float=False, timezone=None, granularities=None)

	Bases: object

	
decrease(key, amount, timestamp=None, execute=True)

	

	
execute()

	

	
get_buckets(key, granularity, count, timestamp=None)

	

	
get_hits(key, granularity, count, timestamp=None)

	

	
get_key(key, timestamp, granularity)

	

	
get_total(*args, **kwargs)

	

	
get_total_hits(*args, **kwargs)

	

	
granularities = OrderedDict([('1minute', {'duration': 60, 'ttl': 3600}), ('5minute', {'duration': 300, 'ttl': 21600}), ('10minute', {'duration': 600, 'ttl': 43200}), ('1hour', {'duration': 3600, 'ttl': 604800}), ('1day', {'duration': 86400, 'ttl': 2678400})])

	

	
increase(key, amount, timestamp=None, execute=True)

	

	
record_hit(key, timestamp=None, count=1, execute=True)

	

	
remove_hit(key, timestamp=None, count=1, execute=True)

	

	
scan_keys(granularity, count, search='*', timestamp=None)

	

	
redis_timeseries.seconds(i)

	

	
redis_timeseries.minutes(i)

	

	
redis_timeseries.hours(i)

	

	
redis_timeseries.days(i)

	

python-redis-timeseries

	redis_timeseries module

 _static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to Redis Timeseries's documentation!

 		Redis Timeseries

 		Install

 		Usage

 		Features

 		Credits

 		Installation

 		Stable release

 		From sources

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		History

 		0.1.8 (2017-07-25)

 		0.1.7 (2017-07-25)

 		0.1.6 (2017-07-25)

 		0.1.5 (2017-07-18)

 		0.1.4 (2017-07-12)

 		0.1.3 (2017-03-30)

 		0.1.2 (2017-03-30)

 		0.1.1 (2017-03-30)

 		0.1.0 (2017-03-30)

_static/plus.png

